Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning
(2024), PLOS Computational Biology, 20, e1012260 - e1012260
MmpR5 protein truncation and bedaquiline resistance in Mycobacterium tuberculosis isolates from South Africa: a genomic analysis.
Roberts LW. et al, (2024), The Lancet. Microbe, 5
Mobilisation and analyses of publicly available SARS-CoV-2 data for pandemic responses
Rahman N. et al, (2024), Microbial Genomics, 10
Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach
Barilar I. et al, (2024), Nature Communications, 15
Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis
Sonnenkalb L. et al, (2023), The Lancet Microbe, 4, e358 - e368
Mobilisation and analyses of publicly available SARS-CoV-2 data for pandemic responses
Rahman N. et al, (2023)
Repeated evolution of bedaquiline resistance inMycobacterium tuberculosisis driven by truncation ofmmpR5
Roberts LW. et al, (2022)
Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing ofM. tuberculosis
(2022), European Respiratory Journal, 60, 2200239 - 2200239
High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai Metropolitan Region
Dreyer V. et al, (2022), Genome Medicine, 14
The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis
Walker TM. et al, (2022), The Lancet Microbe, 3, e265 - e273
Genome-wide association studies of global Mycobacterium tuberculosis resistance to thirteen antimicrobials in 10,228 genomes
Earle SG. and Wilson DJ., (2021)
A data compendium of Mycobacterium tuberculosis antibiotic resistance
Brankin A. and Malone KM., (2021)