Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diabetes mellitus (DM) is a serious global health problem currently affecting over 450 million people worldwide. Defining its interaction with major global infections is an international public health priority. Melioidosis is caused by Burkholderia pseudomallei, an exemplar pathogen for studying intracellular bacterial infection in the context of DM due to the 12-fold increased risk in this group. We characterised immune correlates of survival in peripheral blood of acute melioidosis patients with and without DM and highlight different immune response patterns. We demonstrate the importance of circulating NK cells and show that CX3CR1 expression on lymphocytes is a novel correlate of survival from acute melioidosis. Furthermore, excessive serum levels of IL-15 and IL-18BP contribute to poor outcome independent of DM co-morbidity. CD8+ T cells and granzyme B expression in NK cells are important for survival of non-DM patients, whereas high antibody titres against B. pseudomallei and double-negative T cells are linked to survival of DM patients. Recall responses support a role of γδ T-cell-derived IFN-γ in the establishment of protective immunity in the DM group. Defining the hallmarks of protection in people with DM is crucial for the design of new therapies and vaccines targeting this rapidly expanding risk group. This article is protected by copyright. All rights reserved.

Original publication

DOI

10.1002/eji.201848037

Type

Journal article

Journal

European journal of immunology

Publication Date

29/04/2019

Addresses

Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.