Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.

Original publication




Journal article



Publication Date





418 - 430


HCV, Prophylactic Vaccination, Vaccines, Viral Hepatitis, Drug Development, Hepacivirus, Hepatitis C, Humans, Viral Hepatitis Vaccines