Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The presence of airway inflammation in patients with chronic obstructive pulmonary disease (COPD) provides a rationale for biological agents targeting specific inflammatory pathways. This approach has been strikingly effective in patients with other chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, and asthma. However, there are important and unresolved challenges in COPD, including our incomplete understanding of heterogeneity of the lower airway inflammatory response and how these contribute to the clinical expression of disease. As a result, progress has been slow, and there have been many failures. One notable exception is the targeting of eosinophilic airway inflammation with anti-IL-5, which has an acknowledged and important role in the treatment of severe eosinophilic asthma. Recent phase III studies have shown a reduction in exacerbations of around 20% in patients with COPD and clear evidence of a blood eosinophil count-dependent beneficial effect. The demonstration of clinical efficacy linked to a clinically accessible biomarker raises the possibility of precision biomarker-directed use of biological agents in patients with COPD. The hope is that this will be an exemplar for the future development of biological agents in patients with COPD.

Original publication

DOI

10.1016/j.jaci.2018.04.020

Type

Journal article

Journal

The Journal of allergy and clinical immunology

Publication Date

04/05/2018

Addresses

Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford, United Kingdom. Electronic address: ian.pavord@ndm.ox.ac.uk.