Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Campylobacter is a major cause of human gastroenteritis worldwide. Risk of Campylobacter infection in humans has been associated with many sources, including dogs. This study aimed to investigate whether C. jejuni carried by dogs could potentially be a zoonotic risk for humans and if there were common sources of C. jejuni infection for both humans and dogs. Multilocus sequence typing (MLST) together with macrorestriction analysis of genomic DNA using SmaI and pulsed-field gel electrophoresis (PFGE) were both used to analyze 33 C. jejuni isolates obtained from various dog populations, including those visiting veterinary practices and from different types of kennels. MLST data suggested that there was a large amount of genetic diversity between dog isolates and that the majority of sequence types found in isolates from these dogs were the same as those found in isolates from humans. The main exception was ST-2772, which was isolated from four samples and could not be assigned to a clonal complex. The most commonly identified clonal complex was ST-45 (11 isolates), followed by ST-21 (4 isolates), ST-508 (4 isolates), and ST-403 (3 isolates). The profiles obtained by macrorestriction PFGE were largely in concordance with the MLST results, with a similar amount of genetic diversity found. The diversity of sequence types found within dogs suggests they are exposed to various sources of C. jejuni infection. The similarity of these sequence types to C. jejuni isolates from humans suggests there may be common sources of infection for both dogs and humans. Although only a small number of household dogs may carry C. jejuni, infected dogs should still be considered a potential zoonotic risk to humans, particularly if the dogs originate from kennelled or hunt kennel dog populations, where the prevalence may be higher.

Original publication

DOI

10.1128/JCM.01046-09

Type

Journal article

Journal

J Clin Microbiol

Publication Date

11/2009

Volume

47

Pages

3466 - 3471

Keywords

Animals, Bacterial Typing Techniques, Campylobacter Infections, Campylobacter jejuni, Cluster Analysis, DNA Fingerprinting, DNA, Bacterial, Dog Diseases, Dogs, Electrophoresis, Gel, Pulsed-Field, Genetic Variation, Genotype, Humans, Molecular Epidemiology, Polymorphism, Restriction Fragment Length, Sequence Analysis, DNA