Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Experiments were conducted in adult dogs to determine the respiratory activity of laryngeal muscles during wakefulness and sleep. We studied the EMG activity of three laryngeal muscles in five trained dogs, two of which were completely intact, and three of which had a previously-formed side-hole tracheal stoma. Pairs of electrodes were implanted chronically into the posterior cricoarytenoid muscle (PCA), a laryngeal dilator, cricothyroid (CT), and thyroarytenoid (TA), a laryngeal adductor. EMG electrodes were also inserted into the costal portion of the diaphragm. In wakefulness (W), slow wave sleep (SWS) and rapid eye movement (REM) sleep the EMGs of the PCA and CT muscles increased in intensity during diaphragm activation, with varying levels of basal activity during expiration. However, the greatest levels of inspiratory activity in PCA and CT during sleep were found in REM sleep, usually in the absence of augmented diaphragm EMG activity. This laryngeal muscle activity was associated with laryngeal dilation. There were also marked state-related changes in the level of activity of CT during expiration, suggestive of changes in the degree of expiratory adduction of the larynx. The adductor muscles (TA) were not active during expiration, except during alert W. There were no consistent differences in respiratory activity of the laryngeal muscles between the two intact dogs and those with a tracheal stoma (whether or not an endotracheal tube was in place), nor was laryngeal muscle activity affected by the subsequent creation of a tracheal stoma in the two intact dogs. The findings indicate that sleep-wakefulness state exerts important influences on the respiratory activity of laryngeal muscles in the adult dog.


Journal article


Respir Physiol

Publication Date





315 - 326


Airway Resistance, Animals, Dogs, Electromyography, Laryngeal Muscles, Muscles, Respiration, Sleep, Sleep, REM, Tracheotomy, Wakefulness