Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Compared with the MHC of typical mammals, the chicken MHC (BF/BL region) of the B12 haplotype is smaller, simpler, and rearranged, with two classical class I genes of which only one is highly expressed. In this study, we describe the development of long-distance PCR to amplify some or all of each class I gene separately, allowing us to make the following points. First, six other haplotypes have the same genomic organization as B12, with a poorly expressed (minor) BF1 gene between DMB2 and TAP2 and a well-expressed (major) BF2 gene between TAP2 and C4. Second, the expression of the BF1 gene is crippled in three different ways in these haplotypes: enhancer A deletion (B12, B19), enhancer A divergence and transcription start site deletion (B2, B4, B21), and insertion/rearrangement leading to pseudogenes (B14, B15). Third, the three kinds of alterations in the BF1 gene correspond to dendrograms of the BF1 and poorly expressed class II B (BLB1) genes reflecting mostly neutral changes, while the dendrograms of the BF2 and well-expressed class II (BLB2) genes each have completely different topologies reflecting selection. The common pattern for the poorly expressed genes reflects the fact the BF/BL region undergoes little recombination and allows us to propose a pattern of descent for these chicken MHC haplotypes from a common ancestor. Taken together, these data explain how stable MHC haplotypes predominantly express a single class I molecule, which in turn leads to striking associations of the chicken MHC with resistance to infectious pathogens and response to vaccines.


Journal article


J Immunol

Publication Date





5744 - 5752


Animals, Base Sequence, Chickens, Evolution, Molecular, Gene Expression, Genes, MHC Class I, Genetic Drift, Haplotypes, Histocompatibility Antigens Class I, Molecular Sequence Data, Mutation, Phylogeny, Promoter Regions, Genetic