Rare variants at 16p11.2 are associated with common variable immunodeficiency.
Maggadottir SM., Li J., Glessner JT., Li YR., Wei Z., Chang X., Mentch FD., Thomas KA., Kim CE., Zhao Y., Hou C., Wang F., Jørgensen SF., Perez EE., Sullivan KE., Orange JS., Karlsen TH., Chapel H., Cunningham-Rundles C., Hakonarson H.
BACKGROUND: Common variable immunodeficiency (CVID) is characterized clinically by inadequate quantity and quality of serum immunoglobulins with increased susceptibility to infections, resulting in significant morbidity and mortality. Only a few genes have been uncovered, and the genetic background of CVID remains elusive to date for the majority of patients. OBJECTIVE: We sought to seek novel associations of genes and genetic variants with CVID. METHODS: We performed association analyses in a discovery cohort of 164 patients with CVID and 19,542 healthy control subjects genotyped on the Immuno BeadChip from Illumina platform; replication of findings was examined in an independent cohort of 135 patients with CVID and 2,066 healthy control subjects, followed by meta-analysis. RESULTS: We identified 11 single nucleotide polymorphisms (SNPs) at the 16p11.2 locus associated with CVID at a genome-wide significant level in the discovery cohort. The most significant SNP, rs929867 (P = 6.21 × 10(-9)), is in the gene fused-in-sarcoma (FUS), with 4 other SNPs mapping to integrin CD11b (ITGAM). Results were confirmed in our replication cohort. Conditional association analysis suggests a single association signal at the 16p11.2 locus. A strong trend of association was also seen for 38 SNPs (P < 5 × 10(-5)) in the MHC region, supporting that this is a genuine CVID locus. Interestingly, we found that 80% of patients with the rare ITGAM variants have reduced switched memory B-cell counts. CONCLUSION: We report a novel association of CVID with rare variants at the FUS/ITGAM (CD11b) locus on 16p11.2. The association signal is enriched for promoter/enhancer markers in the ITGAM gene. ITGAM encodes the integrin CD11b, a part of complement receptor 3, a novel candidate gene implicated here for the first time in the pathogenesis of CVID.