Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are used to assess the role of prostaglandins in asthma but their effects on bronchoconstrictor challenges have been inconsistent. The effects of three nebulised nonsteroidal anti-inflammatory drugs on the airway response to inhaled sodium metabisulphite (MBS) and adenosine 5'-monophosphate (AMP) were compared in the same asthmatic subjects to see whether contractile prostaglandins were involved in MBS or AMP induced bronchoconstriction. A possible protective effect of the osmolarity or pH of the inhaled solutions was also assessed. METHODS: Two double blind placebo controlled studies were carried out. In study 1, 15 non-aspirin sensitive patients with mild asthma attended on four occasions and inhaled 5 ml of lysine aspirin (L-aspirin) 900 mg, indomethacin 50 mg, sodium salicylate 800 mg, or saline 20 minutes before an inhaled MBS challenge. On four further occasions 14 of the patients inhaled the same solutions followed by an inhaled AMP challenge. In study 2, 10 of the patients attended on four additional occasions and inhaled 5 ml of 0.9%, 3%, 10%, or 9.5% saline with indomethacin 50 mg 20 minutes before an inhaled MBS challenge. RESULTS: In study 1 inhaled lysine aspirin had a similar effect on MBS and AMP induced bronchoconstriction, increasing the provocative dose causing a 20% fall in FEV1 (PD20) by 1.29 (95% CI 0.54 to 2.03) and 1.23 (95% CI 0.53 to 1.93) doubling doses, respectively. Indomethacin increased the MBS PD20 and AMP PD20 by 0.64 (95% CI -0.1 to 1.38) and 0.99 (95% CI 0.29 to 1.69) doubling doses, respectively. Sodium salicylate had no significant effect on either challenge. The two solutions causing most inhibition were the most acidic and the most alkaline. In study 2 inhaled 9.5% saline with indomethacin (osmolarity 3005 mOsm/kg) increased the MBS PD20 by 1.1 doubling doses (95% CI 0.2 to 2.0) compared with only 0.09 (95% CI -0.83 to 1.0) and 0.04 (95% CI -0.88 to 0.95) doubling doses with 3% saline (918 mOsm/kg) and 10% saline (2994 mOsm/ kg), respectively. CONCLUSIONS: Inhaled L-aspirin and indomethacin have broadly similar protective effects against MBS and AMP induced bronchoconstriction in the doses given, although the effect of indomethacin on MBS was not quite statistically significant. The osmolarity and pH of the solutions did not appear to be important determinants of the response. The effect of L-aspirin and indomethacin is likely to be the result of cyclooxygenase inhibition reducing the production of contractile prostaglandins during MBS and AMP challenge.


Journal article



Publication Date





799 - 804


Adenosine Monophosphate, Administration, Inhalation, Adult, Anti-Inflammatory Agents, Non-Steroidal, Aspirin, Asthma, Bronchial Hyperreactivity, Bronchial Provocation Tests, Bronchoconstrictor Agents, Double-Blind Method, Female, Humans, Hydrogen-Ion Concentration, Indomethacin, Lung, Lysine, Male, Middle Aged, Osmolar Concentration, Sodium Salicylate, Sulfites