Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There are no physical or visual manifestations that define skin sensitivity or irritation; a subjective diagnosis is made on the basis of the evaluation of clinical presentations, including burning, prickling, erythema, and itching. Adverse skin reaction in response to topically applied products is common and can limit the use of dermatological or cosmetic products. The purpose of this study was to evaluate the use of human skin equivalents based on immortalized skin keratinocytes and evaluate the potential of a 22-gene panel in combination with multivariate analysis to discriminate between chemicals known to act as irritants and those that do not. Test compounds were applied topically to full-thickness human skin equivalent or human ex vivo skin and gene signatures determined for known irritants and nonirritants. Principle component analysis showed the discriminatory potential of the 22-gene panel. Linear discrimination analysis, performed to further refine the gene set for a more high-throughput analysis, identified a putative seven-gene panel (IL-6, PTGS2, ATF3, TRPV3, MAP3K8, HMGB2, and matrix metalloproteinase gene MMP-3) that could distinguish potential irritants from nonirritants. These data offer promise as an in vitro prediction tool, although analysis of a large chemical test set is required to further evaluate the system.

Original publication

DOI

10.1016/j.xjidi.2021.100011

Type

Journal

JID Innovations

Publication Date

01/06/2021

Volume

1