Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Circular intronic RNAs (ciRNAs) escaping from DBR1 debranching of intron lariats are co-transcriptionally produced from pre-mRNA splicing, but their turnover and mechanism of action have remained elusive. We report that RNase H1 degrades a subgroup of ciRNAs in human cells. Many ciRNAs contain high GC% and tend to form DNA:RNA hybrids (R-loops) for RNase H1 cleavage, a process that appears to promote Pol II transcriptional elongation at ciRNA-producing loci. One ciRNA, ciankrd52, shows a stronger ability of R-loop formation than that of its cognate pre-mRNA by maintaining a locally open RNA structure in vitro. This allows the release of pre-mRNA from R-loops by ci-ankrd52 replacement and subsequent ciRNA removal via RNase H1 for efficient transcriptional elongation. We propose that such an R-loop dependent ciRNA degradation likely represents a mechanism that on one hand limits ciRNA accumulation by recruiting RNase H1 and on the other hand resolves R-loops for transcriptional elongation at some GC-rich ciRNA-producing loci.

Original publication

DOI

10.1007/s11427-021-1993-6

Type

Journal

Science China Life Sciences

Publication Date

01/11/2021

Volume

64

Pages

1795 - 1809