Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Patients with neutrophil-mediated asthma have poor response to glucocorticoids. The roles and mechanisms of group 3 innate lymphoid cells (ILC3s) in inducing neutrophilic airway inflammation and glucocorticoid resistance in asthma have not been fully clarified. METHODS: ILC3s in peripheral blood were measured by flow cytometry in patients with eosinophilic asthma (EA) and non-eosinophilic asthma (NEA). ILC3s were sorted and cultured in vitro for RNA sequencing. Cytokines production and signaling pathways in ILC3s after IL-1β stimulation and dexamethasone treatment were determined by real-time PCR, flow cytometry, ELISA and western blot. RESULTS: The percentage and numbers of ILC3s in peripheral blood was higher in patients with NEA compared with EA, and negatively correlated with blood eosinophils. IL-1β stimulation significantly enhanced CXCL8 and CXCL1 production in ILC3s via activation of p65 NF-κB and p38/JNK MAPK signaling pathways. The expression of neutrophil chemoattractants from ILC3s was insensitive to dexamethasone treatment. Dexamethasone significantly increased phosphorylation of glucocorticoid receptor (GR) at Ser226 but only with a weak induction at Ser211 residues in ILC3s. Compared to human bronchial epithelial cell line (16HBE cells), the ratio of p-GR S226 to p-GR S211 (p-GR S226/S211) was significantly higher in ILC3s at baseline and after dexamethasone treatment. In addition, IL-1β could induce Ser226 phosphorylation and had a crosstalk effect to dexamethasone via NF-κB pathway. CONCLUSIONS: ILC3s were elevated in patients with NEA, and associated with neutrophil inflammation by release of neutrophil chemoattractants and were glucocorticoid (GC) resistant. This paper provides a novel cellular and molecular mechanisms of neutrophil inflammation and GC-resistance in asthma. Trial registration The study has been prospectively registered in the World Health Organization International Clinical Trials Registry Platform (ChiCTR1900027125).

Original publication




Journal article


Respir Res

Publication Date





Asthma, Glucocorticoid resistant, Group 3 innate lymphoid cells, Neutrophil chemoattractant, Neutrophilic inflammation, Humans, Glucocorticoids, Receptors, Glucocorticoid, Phosphorylation, NF-kappa B, Neutrophils, Immunity, Innate, Lymphocytes, Asthma, Bronchi, Dexamethasone, Inflammation