Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The antibiotic resistance crisis continues to threaten human health. Better predictions of the evolution of antibiotic resistance genes could contribute to the design of more sustainable treatment strategies. However, comprehensive prediction of antibiotic resistance gene evolution via laboratory approaches remains challenging. By combining site-specific integration and high-throughput sequencing, we quantified relative growth under the respective selection of cefotaxime or ceftazidime selection in ∼23,000 Escherichia coli MG1655 strains that each carried a unique, single-copy variant of the extended-spectrum β-lactamase gene blaCTX-M-14 at the chromosomal att HK022 site. Significant synergistic pleiotropy was observed within four subgenic regions, suggesting key regions for the evolution of resistance to both antibiotics. Moreover, we propose PEARP and PEARR, two deep-learning models with strong clinical correlations, for the prospective and retrospective prediction of blaCTX-M-14 evolution, respectively. Single to quintuple mutations of blaCTX-M-14 predicted to confer resistance by PEARP were significantly enriched among the clinical isolates harboring blaCTX-M-14 variants, and the PEARR scores matched the minimal inhibitory concentrations obtained for the 31 intermediates in all hypothetical trajectories. Altogether, we conclude that the measurement of local fitness landscape enables prediction of the evolutionary trajectories of antibiotic resistance genes, which could be useful for a broad range of clinical applications, from resistance prediction to designing novel treatment strategies.

Original publication

DOI

10.1093/molbev/msac086

Type

Journal article

Journal

Molecular biology and evolution

Publication Date

05/2022

Volume

39

Addresses

Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.