Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Preliminary evidence supports an association between obstructive sleep apnea (OSA) and thoracic aortic dilatation. The mechanisms through which OSA may promote thoracic aortic dilatation are incompletely understood. Therefore, we studied the acute effects of simulated apnea and hypopnea on aortic diameter and BP in humans. METHODS: The diameter of the aortic root was measured in 20 healthy volunteers by echocardiography, and peripheral BP was continuously recorded prior, during, and immediately after simulated obstructive hypopnea (inspiration through threshold load), simulated obstructive apnea (Müller maneuver), end-expiratory central apnea, and normal breathing in randomized order. RESULTS: Proximal aortic diameter increased significantly during inspiration through a threshold load (+6.48%; SE, 3.03; P = .007), but not during Müller maneuver (+3.86%; SE, 2.71; P = .336) or end-expiratory central apnea (+0.62%; SE, 2.94; P = .445). Maneuver-induced changes in mean BP were observed during inspiration through a threshold load (-10.5 mm Hg; SE, 2.2; P < .001), the Müller maneuver (-8.8 mm Hg; SE, 2.4; P < .001), and end-expiratory central apnea (-4.2 mm Hg; SE, 1.4; P = .052). There was a significant increase in mean BP on release of threshold load inspiration (+8.1 mm Hg; SE, 2.9 mm Hg; P = .002), Müller maneuver (+10.7 mm Hg; SE, 2.9; P < .001), and end-expiratory central apnea (+10.6 mm Hg; SE, 2.5; P < .001). CONCLUSIONS: Simulated obstructive hypopnea/apnea and central apnea induced considerable changes in BP, and obstructive hypopnea was associated with an increase in proximal aortic diameter. Further studies are needed to investigate effects of apnea and hypopnea on transmural aortic pressure and aortic diameter to define the role of OSA in the pathogenesis of aortic dilatation.

Original publication

DOI

10.1378/chest.10-2799

Type

Journal article

Journal

Chest

Publication Date

09/2011

Volume

140

Pages

675 - 680

Keywords

Adolescent, Adult, Aged, Aorta, Thoracic, Blood Pressure, Dilatation, Pathologic, Female, Heart Rate, Humans, Male, Middle Aged, Sleep Apnea Syndromes, Sleep Apnea, Obstructive, Young Adult