Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human cultured mast cells, immunologically activated with immunoglobuin E (IgE)/anti-IgE, released a factor(s) that promoted chemotaxis of human CRTH2+ CD4+ T helper type 2 (Th2) lymphocytes. Mast cell supernatants collected at 20 min, 1 hr, 2 hr and 4 hr after activation caused a concentration-dependent increase in the migration of Th2 cells. The effect of submaximal dilutions of mast-cell-conditioned media was inhibited in a dose-dependent manner by ramatroban (IC50 = 96 nm), a dual antagonist of both the thromboxane-like prostanoid (TP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), but not by the selective TP antagonist SQ29548, implicating CRTH2 in mediating the chemotactic response of these Th2 cells. The effect of mast-cell-conditioned media was mimicked by prostaglandin D2 (PGD2) and this eicosanoid was detected in the conditioned media from activated mast cells in concentrations sufficient to account for the activity of the mast cell supernatants. Treatment of the mast cells with the cyclo-oxygenase inhibitor diclofenac (10 microm) inhibited both the production of PGD2 and the CRTH2+ CD4+ Th2-stimulatory activity, while addition of exogenous PGD2 to conditioned media from diclofenac-treated mast cells restored the ability of the supernatants to promote chemotaxis of these Th2 cells. The degree of inhibition caused by diclofenac treatment of the mast cells was concordant with the degree of inhibition of chemotactic responses afforded by CRTH2 blockade. These data suggest that PGD2, or closely related metabolites of arachidonic acid, produced from mast cells may play a central role in the activation of CRTH2+ CD4+ Th2 lymphocytes through a CRTH2-dependent mechanism.

Original publication

DOI

10.1111/j.1365-2567.2006.02440.x

Type

Journal article

Journal

Immunology

Publication Date

11/2006

Volume

119

Pages

362 - 368

Keywords

Carbazoles, Cells, Cultured, Chemotaxis, Leukocyte, Culture Media, Conditioned, Cyclooxygenase Inhibitors, Diclofenac, Dose-Response Relationship, Immunologic, Humans, Immunoglobulin E, Lymphocyte Activation, Mast Cells, Prostaglandin D2, Receptors, Immunologic, Receptors, Prostaglandin, Receptors, Thromboxane, Sulfonamides, Th2 Cells