Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BackgroundMicroRNAs (miRNAs) are cell-specific small non-coding RNAs that can regulate gene expression and have been implicated in Inflammatory Bowel Disease (IBD) pathogenesis. In our study, we define the cell-specific miRNA profiles and investigate its biomarker potential in IBD.MethodsIn a 2-stage prospective multi-centre case control study, Next Generation sequencing was performed on a discovery cohort of immunomagnetically separated leucocytes from 32 patients (9 CD, 14 UC, 8 healthy controls) and differentially expressed signals were validated in whole blood in 294 patients (97 UC, 98 CD, 98 non-IBD) using quantitative PCR. Correlations were analysed with phenotype, including need for early treatment escalation as a marker of progressive disease using Cox proportional hazards.ResultsIn stage 1, each leucocyte subset (CD4+ and CD8+ T-cells and CD14+ monocytes) was analysed in IBD and controls. Three specific miRNAs differentiated IBD from controls in CD4+ T-cells, including miR-1307-3p (p=0.01), miR-3615 (p=0.02) and miR-4792 (p=0.01). In the extension cohort, in stage 2, miR-1307-3p was able to predict disease progression in IBD (HR 1.98, IQR:1.20-3.27;logrank p=1.80×10-3), in particular CD (HR 2.81; IQR: 1.11-3.53, p=6.50×10-4). Using blood-based multimarker miRNA models, the estimated chance of escalation in CD was 83% if 2 or more criteria were met and 90% for UC if 3 or more criteria are met.InterpretationWe have identified and validated unique CD4+ T-cell miRNAs that are differentially regulated in IBD. These miRNAs may be able to predict treatment escalation and have the potential for clinical translation; further prospective evaluation is now indicated.

Original publication




Conference paper

Publication Date



MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, United Kingdom.


IBD Character Consortium