Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Tensin gene family encodes proteins thought to modulate integrin function. C-terminal Tensin-like (CTEN) is a member of the Tensin gene family which lacks the N-terminus actin-binding domain. Cten is reported to have both oncogenic and tumour-suppressor functions. We investigated the role that Cten may play in colorectal cancer (CRC). By quantitative RT-PCR CTEN is up-regulated (i.e. > two-fold increase) in 62% of cell lines and 69% of tumours compared with normal mucosa, consistent with CTEN being a possible oncogene. Stable transfection of HCT116 and SW480 (CRC cell lines with low endogenous Cten expression) with a Cten expression vector gave identical results in both cell lines. Forced Cten expression did not cause change in cell numbers, although it did confer resistance to staurosporine-induced apoptosis (p < 0.005). Cten also induced epithelial-mesenchymal transition (EMT) in tumour cells accompanied by a significant increase in both cell migration (transwell migration and cell wounding assays, p < 0.001 and p < 0.05, respectively) and cell invasion (invasion through Matrigel, p < 0.001). Given the observed EMT, we investigated the levels of E-cadherin. Cten induction was associated with a reduction in E-cadherin protein expression but not levels of E-cadherin mRNA. These data suggest that CTEN is an oncogene in CRC which stimulates EMT, cell migration and invasion and may therefore have a role in tumour invasion/spread. Furthermore, Cten induction is associated with post-transcriptional repression of E-cadherin.

Original publication

DOI

10.1002/path.2508

Type

Journal article

Journal

J Pathol

Publication Date

05/2009

Volume

218

Pages

57 - 65

Keywords

Cadherins, Cell Line, Cell Movement, Cell Proliferation, Colon, Colorectal Neoplasms, Drug Resistance, Neoplasm, Gene Expression Regulation, Neoplastic, Immunohistochemistry, Microfilament Proteins, Microscopy, Confocal, Oncogenes, RNA, Messenger, Reverse Transcriptase Polymerase Chain Reaction, Staurosporine, Tensins, Transfection