Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adenoviral vectors induce robust epitope-specific CD8+ T cell responses. Within the repertoire of responses generated both conventional memory evolution and the phenomenon of memory inflation are seen. The rules governing which epitopes inflate are not fully known, but may include a role for both antigen processing and competition. To investigate this, we looked at memory generated from vectors targeting the Gp33-41 (KAVYNFATC/K9C) epitope from the gp of lymphocytic choriomeningitis virus (LCMV) in mice. This well-described epitope has both the Gp33-41 and Gp34-41 epitopes embedded within it. Vaccination with a full-length gp or a minigene Ad-Gp33/K9C vector-induced conventional memory responses against the immunodominant Gp33/K9C epitope but a strong inflationary response against the Gp34/A8C epitope. These responses showed sustained in vivo function, with complete protection against LCMV infectious challenge. Given the unexpected competition between epitopes seen in the minigene model, we further tested epitope competition using the full-length Ad-LacZ (β-galactosidase) model. Generation of an Ad-LacZ vector with a single amino acid disruption of the inflationary β-gal96-103 /D8V epitope transformed the β-gal497-504 /I8V epitope from conventional to inflationary memory. This work collectively demonstrates the importance of epitope competition within adenoviral vector inserts and is of relevance to future studies using adenoviral vectored immunogens.

Original publication




Journal article


European journal of immunology

Publication Date





1356 - 1363


Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.


CD8-Positive T-Lymphocytes, Animals, Mice, Inbred C57BL, Mice, Adenoviridae, Lymphocytic choriomeningitis virus, Lymphocytic Choriomeningitis, Viral Proteins, Antigens, Viral, Epitopes, T-Lymphocyte, Immunodominant Epitopes, Immunologic Memory, Genetic Vectors, Female