Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sequence-based typing is essential for understanding the epidemiology of Campylobacter infections, a major worldwide cause of bacterial gastroenteritis. We demonstrate the practical and rapid exploitation of whole-genome sequencing to provide routine definitive characterization of Campylobacter jejuni and Campylobacter coli for clinical and public health purposes. Short-read data from 384 Campylobacter clinical isolates collected over 4 months in Oxford, United Kingdom, were assembled de novo. Contigs were deposited at the pubMLST.org/campylobacter website and automatically annotated for 1,667 loci. Typing and phylogenetic information was extracted and comparative analyses were performed for various subsets of loci, up to the level of the whole genome, using the Genome Comparator and Neighbor-net algorithms. The assembled sequences (for 379 isolates) were diverse and resembled collections from previous studies of human campylobacteriosis. Small subsets of very closely related isolates originated mainly from repeated sampling from the same patients and, in one case, likely laboratory contamination. Much of the within-patient variation occurred in phase-variable genes. Clinically and epidemiologically informative data can be extracted from whole-genome sequence data in real time with straightforward, publicly available tools. These analyses are highly scalable, are transparent, do not require closely related genome reference sequences, and provide improved resolution (i) among Campylobacter clonal complexes and (ii) between very closely related isolates. Additionally, these analyses rapidly differentiated unrelated isolates, allowing the detection of single-strain clusters. The approach is widely applicable to analyses of human bacterial pathogens in real time in clinical laboratories, with little specialist training required.

Original publication

DOI

10.1128/JCM.00066-13

Type

Journal article

Journal

J Clin Microbiol

Publication Date

08/2013

Volume

51

Pages

2526 - 2534

Keywords

Campylobacter Infections, Campylobacter coli, Campylobacter jejuni, Cluster Analysis, Genome, Bacterial, Genotype, Humans, Molecular Epidemiology, Multilocus Sequence Typing, Phylogeny, Time Factors, United Kingdom