Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractDetection of HIV drug resistance (HIVDR) is vital to successful anti‐retroviral therapy (ART). HIVDR testing to determine drug‐resistance mutations is routinely performed in Australia to guide ART choice in newly diagnosed people living with HIV or in cases of treatment failure. In 2022, our clinical microbiology laboratory sought to validate a next‐generation sequencing (NGS)‐based HIVDR assay to replace the previous Sanger‐sequencing (SS)‐based ViroSeq. NGS solutions for HIVDR offer higher throughput, lower costs and higher sensitivity for variant detection. We sought to validate the previously described low‐cost probe‐based NGS method (veSEQ‐HIV) for whole‐genome recovery and HIVDR‐testing in a diagnostic setting. veSEQ‐HIV displayed 100% and 98% accuracy in major and minor mutation detection, respectively, and 100% accuracy of subtyping (provided > 1000 mapped reads were obtained). Pairwise comparison exhibited low inter‐and intrarun variability across the whole‐genome (Jaccard index [J] = 0.993; J = 0.972) and the Pol gene (J = 0.999; J = 0.999), respectively. veSEQ‐HIV met all our pre‐set criteria based on WHO recommendations and successfully replaced ViroSeq in our laboratory. Scaling‐down veSEQ‐HIV to a limited batch size and sequencing on Illumina iSeq. 100, allowed easy implementation of the assay into the workflow of a small sequencing laboratory with minimal staff and equipment and the ability to meet clinically relevant test turn‐around times. As HIVDR‐testing moves from SS‐ to NGS‐based methods and new ART drugs come to market (particularly those with targets outside the Pol region), whole‐genome recovery using veSEQ‐HIV provides a robust, cost‐effective and “future‐proof” NGS method for HIVDR‐testing.

Original publication

DOI

10.1002/jmv.29273

Type

Journal article

Journal

Journal of Medical Virology

Publisher

Wiley

Publication Date

12/2023

Volume

95