Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spatial biology, which combines molecular biology and advanced imaging, enhances our understanding of tissue cellular organisation. Despite its potential, spatial omics encounters challenges related to data complexity, computational requirements and standardisation of analysis. In clinical applications, spatial omics has the potential to revolutionise biomarker discovery, disease stratification and personalised treatments. It can identify disease-specific cell patterns, and could help risk stratify patients for clinical trials and disease-appropriate therapies. Although there are challenges in adopting it in clinical practice, spatial omics has the potential to significantly enhance patient outcomes. In this paper, we discuss the recent evolution of spatial biology, and its potential for improving our tissue level understanding and treatment of disease, to help advance precision and effectiveness in healthcare interventions.

Original publication

DOI

10.1308/rcsann.2023.0091

Type

Journal article

Journal

Annals of the Royal College of Surgeons of England

Publication Date

04/2024

Volume

106

Pages

305 - 312

Addresses

Centre for Human Genetics, University of Oxford, UK.

Keywords

Humans, Biomedical Research