Coagulopathy in liver disease: complication or therapy?

Dr Vipul Jairath BSc. MBChB MRCP PGDipCT
Research Fellow and honorary SpR in Gastroenterology
NHS Blood and Transplant and Translational Gastroenterology Unit
John Radcliffe Hospital, Oxford, UK
Liver cirrhosis

- Major burden of morbidity and mortality worldwide, responsible for 800,000 deaths annually.
- Prevalence and incidence rising in the UK in parallel with epidemic of alcohol abuse and obesity.
- 50,000 living with cirrhosis, 7000 new cases/year
- One of the most complex and multifactorial acquired disorders of haemostasis
Patients with cirrhosis bleed

- “Auto-anticoagulated” – based upon conventional coagulation indices
- 15%-20% mortality
- Many die from haemorrhage
- Liver and GI diseases- largest consumer groups of all blood components in the UK

Hearnshaw et al., Gut 2010; Wells et al, Transfus Med., 2010
Liver cirrhosis is associated with venous thromboembolism among hospitalised patients in a nationwide US study

Wu H, Nyguyen GC
Clin Gastro Hep 2010;8 (9): 800-805

Risk of venous thromboembolism in patients with liver disease; a nationwide population based case-control study

Soggard KK, Horvath-Puho E et al.
Am J Gastroenterol 2009;7: 303-310

Deep Vein Thrombosis and pulmonary embolism in hospitalised patients with cirrhosis

Alim M, Ananthakhrishnan AN et al.
Dig Dis Sci 2011
Limitations of conventional coagulation indices

- **Prothrombin time**
 - Clotting time of a mixture of PPP/TF/CaCL
 - Only measures procoagulant factors
 - Devised to monitor VKAs, NOT any other indication

- Do not predict the risk of bleeding nor outcomes of patients who present with bleeding

- Use engrained in daily practice to guide transfusion e.g. pre-procedurally and to treat bleeding
Global Assays - Thrombin Generation Tests

- Continuously monitors thrombin activity in plasma
- TG triggered by Tissue factor and/or phospholipid
- Fluorescent plate reader
- Used routinely in haematological disorders
Global whole blood assays of coagulation: Rotational thromboelastometry

- Visco-elastic test allowing an assessment in whole blood of the real-time interaction between coagulation factors, platelets, red blood cells, fibrinogen, clot stability and fibrinolysis.
Results – Thrombin generation in PPP

<table>
<thead>
<tr>
<th>Thrombin generation Parameters</th>
<th>Cirrhotics-compensated N=74</th>
<th>Healthy controls N=30</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagtime (min)</td>
<td>2.6 (0.9)</td>
<td>3.3 (0.5)</td>
<td><0.01</td>
</tr>
<tr>
<td>Peak (nM)</td>
<td>323.4 (91.9)</td>
<td>442.4 (80.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>Time to Peak (min)</td>
<td>5.2 (1.7)</td>
<td>6.2 (0.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>ETP (nmol/L)</td>
<td>2036.2 (438)</td>
<td>2665.1 (443)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Jairath et al. Gastroenterology: 2012 (142);5: S-918
Results - ETP Ratio with/without Protac

- Liver
g- GFD

- Variceal

- Bleed

- Control

- Class A

- Class B

- Class C

Patient type

Child Pugh Score
The balance of pro- and anti-coagulant factors

Factor 8

Factor 7

Factor 9

Factor 11

Factor 2
The balance of pro- and anti-coagulant factors

Antithrombin 3

Protein C

Protein S

Tripodi et al., Gastroenterology 2009; Gatt et al., JTH, 2010; Jairath et al. Gastroenterology: 2012 (142);5: S-918
Procoagulant microvesicles in plasma of patients with cirrhosis

- 0.1 - 1.0 μm
- Cell-derived
 - phenotype & function may be cell-type and agonist-dependent
 - Often express membrane proteins from cell of origin
- Variable exposure of phosphatidylserine
- Membrane skeleton may be present
- Nucleus is absent
- Free of nucleic acids
- Lack synthetic capability
Complex Mixture of circulating Microvesicles originating from different tissues

Liver
- Hepatocytes
 [69]
- Cholangiocytes
 [87]
- Myofibroblastic stellate cells
 [87]

Other peripheral tissues
- Placental chorionic villi (trophoblast cells)
 [78]
- Adipocytes (adiposomes)
 [65]
- Microglia
 [72,83]

Immunological system
- Leukocytes
 - Monocytes
 [81]
 - Macrophages
 [67, 82]
 - Dendritic cells
 [86]
 - Neutrophils
 [44, 71]
 - Mast cells
 [84, 50]
 - B & T lymphocytes
 [62, 80]

Other blood cells
- Erythrocytes
 [75]
- Platelets
 [70, 73, 81]
Micro and Nanovesicle function

- coagulation
- communication
- anticoagulation
- transport
- waste management
- inflammation
- cell activation
- angiogenesis
- endothelial dysfunction
Microvesicles and haemostasis

- Microparticles (MVs) key effectors of haemostasis
 - Phosphatidylserine (PS) surface expression and/or
 - Binding sites for procoagulant factors 8, 9, 10
 - Tissue Factor (TF) surface expression

Increasing procoagulant activity
Microvesicle phenotype in Cirrhosis

<table>
<thead>
<tr>
<th>Microvesicles /µL Plasma Mean (sd)</th>
<th>Cirrhotics- compensated (N=28)</th>
<th>Healthy controls (N=10)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PS positive (AV)</td>
<td>1413.5 (1985)</td>
<td>278.7 (259)</td>
<td><0.05</td>
</tr>
<tr>
<td>Platelet derived (CD41+)</td>
<td>233.5 (215)</td>
<td>147.3 (190)</td>
<td>0.17</td>
</tr>
<tr>
<td>Red cell derived (CD235+)</td>
<td>225.9 (384)</td>
<td>196.6 (352)</td>
<td>0.86</td>
</tr>
<tr>
<td>Endothelial derived (CD31+/CD41-)</td>
<td>48.8 (52)</td>
<td>20.1 (13)</td>
<td>0.16</td>
</tr>
<tr>
<td>Total TF positive (CD142)</td>
<td>71.9 (70)</td>
<td>19.0 (8)</td>
<td>0.11</td>
</tr>
<tr>
<td>Platelet derived (CD41+)</td>
<td>16.9 (8.6)</td>
<td>11.9 (7.1)</td>
<td>0.18</td>
</tr>
<tr>
<td>White cell derived (CD45+)</td>
<td>19.8 (7.6)</td>
<td>9.9 (4.4)</td>
<td>0.02</td>
</tr>
<tr>
<td>Monocyte derived (CD14+)</td>
<td>18.1 (6.9)</td>
<td>10.5 (2.6)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Jairath et al. Gastroenterology: 2012 (142);5: S-951
The haemostatic balance in compensated cirrhosis: normal-hypercoagulable

- Procoagulant factors
- Platelets number
- Platelet function
- Fibrinogen
- Fibrinolysis
- Red cell mass

- Anticoagulant factors
- Von-Willebrand factor
- ADAMTS 13
- Factor 8
- Exosomes and MVs

Endothelial dysfunction
- Portal Hypertension
- Uraemia
- Sepsis

Hospitalisation

Tripodi et al., Gastroenterology 2009; Lisman and Porte, Blood 2010
Acute and Chronic Changes in the Microcirculation of the Liver in Inbred Strains of Mice Following Infection with Mouse Hepatitis Virus Type 3

Peggy Macphee, Vincent Dindzans, Lai-Sun Fung and Gary Levy

Focal necrosis at 24 hours-H&E
Necrotic Areas at Day 3-H&E
Micro-thrombi and ischaemic Hepatocytes- Day 3 microscopy

Hepatology 1985 (5):4;649-660
Hepatic and Portal Vein Thrombosis in Cirrhosis: Possible Role in Development of Parenchymal Extinction and Portal Hypertension

Ian Wanless, Florence Wong, Lawrence Blendis, Paul Greig, Jenny Heathcote, Gary Levy

- Histological studies on small and medium sized intra-hepatic veins and sinusoids in 61 explanted human livers
- Entire spectrum of post-thrombotic changes in these vessels
 - Acute thrombosis and intimal fibrosis
 - Partial recannalisation
 - Multiple layers of fibrosis – recurrent thromboses
 - Severe obliteration in the smallest veins
- Irreversible loss of hepatocytes from a region and replacement by fibrous tissue
Aimed to assess the effect of anticoagulation with warfarin on hepatic fibrogenesis in a mouse model

Two strains of mice – CCl4 vs. CCl4 + Warfarin

Warfarin treated mice had 1/3 reduction fibrosis scores than mice given CCl4 and no warfarin

Change in fibrosis correlated with HSC activation

Anticoagulation slowed hepatic fibrogenesis
 • May be through thrombin signalling via HSC
 • Provides rationale for anticoagulation as a therapy
Anticoagulation has the potential to reduce hepatic fibrogenesis

TF+VIIa → Xa+Va → IIa (thrombin) → Platelets aggregation → Initiation
- TF/FVIIa
- FIXa/FVIIa
- Warfarin, UFH, LMWH, FXals

Endothelial activation → Inflammatory cells recruitment → Propagation
- FXa/FVa
- Thrombin
- Warfarin, UFH, LMWH, DTIs
Moving from the laboratory to the patient – RCTs of anticoagulation in cirrhosis

- **Population** – 70 patients with Child score 7-10
- **Intervention/comparator** – Enoxaparin vs. Placebo
- **Outcomes** – PVT, decompensation, survival, bleeding
- **Study Design** - randomised, open label

<table>
<thead>
<tr>
<th></th>
<th>LMWH % (n)</th>
<th>Placebo % (n)</th>
<th>P- Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVT</td>
<td>0 (0/34)</td>
<td>17 (6/36)</td>
<td>0.01</td>
</tr>
<tr>
<td>Decompensation</td>
<td>12 (4/34)</td>
<td>61 (22/36)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bleeding</td>
<td>0 (0/34)</td>
<td>0 (0/36)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>24 (8/34)</td>
<td>36 (13/36)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Moving from the laboratory to the patient – RCTs of anticoagulation in cirrhosis

- **Population** – 90 patients with HCV and transplant within previous 4 months

- **Intervention/comparator** – Warfarin (INR 2-3) vs. standard care

- **Outcomes** – Stage of fibrosis at 24 months; no. HSC per high power field; non-invasive markers of fibrosis

- **Study design** – randomised, open-label, stratified by centre/gender
Conclusions

- Hypercoagulation of CLD appears to be associated with hepatic fibrogenesis.

- Modulating coagulation may be a relevant therapeutic target for development of novel anti-fibrotics.

- Aforementioned trials are proof of concept and will provide some pilot data for possible larger phase 3 trials.

- Patient selection will be key and global tests of coagulation could play a role in personalising treatment.
Acknowledgements

Supervisors and Collaborators

- Dr Ellie Barnes – Hepatology, University of Oxford
- Dr Paul Harrison – Oxford Haemophilia and Thrombosis Centre
- Prof Mike Murphy – Haematology and Transfusion, NHSBT
- Dr Simon Stanworth – Haematology and Transfusion, NHSBT
- Dr Jane Collier – Hepatology, John Radcliffe Hospital, Oxford

Funding

- National Health Service Blood and Transplant (NHSBT)