Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Standard ontologies are critical for interoperability and multisite analyses of health data. Nevertheless, mapping concepts to ontologies is often done with generic tools and is labor-intensive. Contextualizing candidate concepts within source data is also done in an ad hoc manner. Methods and Results We present AnnoDash, a flexible dashboard to support annotation of concepts with terms from a given ontology. Text-based similarity is used to identify likely matches, and large language models are used to improve ontology ranking. A convenient interface is provided to visualize observations associated with a concept, supporting the disambiguation of vague concept descriptions. Time-series plots contrast the concept with known clinical measurements. We evaluated the dashboard qualitatively against several ontologies (SNOMED CT, LOINC, etc.) by using MIMIC-IV measurements. The dashboard is web-based and step-by-step instructions for deployment are provided, simplifying usage for nontechnical audiences. The modular code structure enables users to extend upon components, including improving similarity scoring, constructing new plots, or configuring new ontologies. Conclusion AnnoDash, an improved clinical terminology annotation tool, can facilitate data harmonizing by promoting mapping of clinical data. AnnoDash is freely available at https://github.com/justin13601/AnnoDash (https://doi.org/10.5281/zenodo.8043943).

Original publication

DOI

10.1093/jamiaopen/ooad046

Type

Journal article

Journal

JAMIA Open

Publisher

Oxford University Press (OUP)

Publication Date

04/07/2023

Volume

6