Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.
Journal article
Nature communications
05/2024
15
Translational Gastroenterology Unit, University of Oxford, Oxford, UK. dominik.aschenbrenner@novartis.com.
Macrophages, Humans, Crohn Disease, Genetic Predisposition to Disease, Lipopolysaccharides, Protein Isoforms, Interleukin-10, DNA Methylation, Gene Expression Regulation, Quantitative Trait Loci, Promoter Regions, Genetic