Carolina Arancibia

Research Area: Immunology
Technology Exchange: Cell sorting, Cellular immunology and Flow cytometry
Scientific Themes: Immunology & Infectious Disease

We aim to set up and maintain a longitudinal cohort of patients with well annotated phenotypes and genotypes linked to tissue and nucleic acid samples, in order to enable:

  • Descriptive studies of the natural history and evolution of disease
  • Identify features or biomarkers that can facilitate prognostication
  • Research analyses identifying novel biomarkers or stratifications that will be useful for clinical or research purposes
  • To facilitate careful patient selection or stratification for future experimental medical studies of novel interventions, when required
  • Provide information for health-economic analysis
  • To determine appropriate outcome measures for interventional studies

Name Department Institution Country
Dr Alessandra Geremia Experimental Medicine Oxford University, John Radcliffle Hospital United Kingdom
Paul Klenerman Experimental Medicine Division Oxford University, Peter Medawar Building United Kingdom
Professor Satish Keshav Experimental Medicine Division Oxford University, John Radcliffe Hospital United Kingdom
Dr Kevin Maloy Sir William Dunn School of Pathology United Kingdom
Dr Joanne Konkel University of Manchester United Kingdom
Dr Sheeba Irshad King's College, London United Kingdom
Dr You Zhou Cardiff University United Kingdom
Jack Satsangi Experimental Medicine Division Oxford University, John Radcliffe Hospital United Kingdom
Jeremy Tomlinson OCDEM United Kingdom
Leng T, Akther HD, Hackstein C-P, Powell K, King T, Friedrich M, Christoforidou Z, McCuaig S, Neyazi M, Arancibia-Cárcamo CV et al. 2019. TCR and Inflammatory Signals Tune Human MAIT Cells to Exert Specific Tissue Repair and Effector Functions. Cell Rep, 28 (12), pp. 3077-3091.e5. | Show Abstract | Read more

MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.

Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E et al. 2019. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity, 50 (2), pp. 432-445.e7. | Show Abstract | Read more

Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.

Kurioka A, Cosgrove C, Simoni Y, van Wilgenburg B, Geremia A, Björkander S, Sverremark-Ekström E, Thurnheer C, Günthard HF, Khanna N et al. 2018. CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells. Front Immunol, 9 (APR), pp. 486. | Show Abstract | Read more

CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells.

Geremia A, Arancibia-Cárcamo CV. 2017. Innate Lymphoid Cells in Intestinal Inflammation. Front Immunol, 8 (OCT), pp. 1296. | Show Abstract | Read more

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn's disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of developing colorectal cancer. ILC may play an important amplifying role in IBD and IBD-associated cancer, through secretion of inflammatory cytokines and interaction with other immune and non-immune cells. Here, we will review the evidence indicating a role for ILC in the pathogenesis of chronic intestinal inflammation.

Gwela A, Siddhanathi P, Chapman RW, Travis S, Powrie F, Arancibia-Cárcamo CV, Geremia A. 2017. Th1 and Innate Lymphoid Cells Accumulate in Primary Sclerosing Cholangitis-associated Inflammatory Bowel Disease. J Crohns Colitis, 11 (9), pp. 1124-1134. | Show Abstract | Read more

Background and Aims: Primary sclerosing cholangitis [PSC] is an idiopathic chronic disorder of the hepatobiliary system associated with inflammatory bowel disease [IBD], mainly ulcerative colitis [UC]. Colitis in patients with PSC and UC [PSC-UC] exhibits characteristic features and is linked to increased colon cancer risk. Genetic studies have identified immune-related susceptibility genes that only partially overlap with those involved in IBD. These observations suggest that PSC-UC may represent a distinct form of IBD. It remains to be elucidated whether different immune mechanisms are involved in colitis in these patients. We aimed to evaluate systemic and intestinal T cell and innate lymphoid cell [ILC] responses, previously associated with IBD, in patients with PSC-UC compared with patients with UC and healthy controls. Methods: Blood samples and colorectal biopsies were collected from patients with PSC-UC, patients with UC, and healthy controls. T cell and ILC phenotypes were analysed by multicolour flow cytometry. Results: Chemokine receptor [CCR] profiling of circulating T cells showed decreased CCR6-CXCR3+ Th1 cells in PSC-UC, but increased CCR6-CCR4+ Th2 cells only in UC, whereas increased CCR6+CCR4+ Th17 cells were found in both patient groups compared with healthy controls. Increased frequencies of IFN-γ secreting T cells were found in the colon of patients with PSC-UC compared with UC. Interestingly, we observed accumulation of ILC in the colon in PSC-UC. Conclusions: Our study suggests that PSC-UC represents a different immunological disorder from UC, characterised by increased intestinal Th1 and ILC responses. These results provide further evidence that PSC-UC may represent a distinct form of IBD.

West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, Coccia M, Görtz D, This S, Stockenhuber K et al. 2017. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med, 23 (5), pp. 579-589. | Show Abstract | Read more

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.

de Wit J, Al-Mossawi MH, Hühn MH, Arancibia-Cárcamo CV, Doig K, Kendrick B, Gundle R, Taylor P, Mcclanahan T, Murphy E et al. 2016. RORγt inhibitors suppress T(H)17 responses in inflammatory arthritis and inflammatory bowel disease. J Allergy Clin Immunol, 137 (3), pp. 960-963. | Read more

Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Cárcamo CV, Sobel RA, Rudensky AY, Kuchroo VK et al. 2015. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med, 212 (10), pp. 1603-1621. | Show Abstract | Read more

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of T cell responses. Germline Ctla4 deficiency is lethal, making investigation of the function of CTLA-4 on mature T cells challenging. To elucidate the function of CTLA-4 on mature T cells, we have conditionally ablated Ctla4 in adult mice. We show that, in contrast to germline knockout mice, deletion of Ctla4 during adulthood does not precipitate systemic autoimmunity, but surprisingly confers protection from experimental autoimmune encephalomyelitis (EAE) and does not lead to increased resistance to MC38 tumors. Deletion of Ctla4 during adulthood was accompanied by activation and expansion of both conventional CD4(+)Foxp3(-) (T conv) and regulatory Foxp3(+) (T reg cells) T cell subsets; however, deletion of CTLA-4 on T reg cells was necessary and sufficient for protection from EAE. CTLA-4 deleted T reg cells remained functionally suppressive. Deletion of Ctla4 on T reg cells alone or on all adult T cells led to major changes in the Ctla4 sufficient T conv cell compartment, including up-regulation of immunoinhibitory molecules IL-10, LAG-3 and PD-1, thereby providing a compensatory immunosuppressive mechanism. Collectively, our findings point to a profound role for CTLA-4 on T reg cells in limiting their peripheral expansion and activation, thereby regulating the phenotype and function of T conv cells.

De Wit J, Al-Mossawi MH, Huhn M, Arancibia CV, Powrie F, Bowness P. 2014. SUPPRESSION OF IN-VITRO TYPE-17 RESPONSES IN SPA PATIENTS USING SMALL MOLECULE ROR-gamma T INHIBITORS CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 32 (5), pp. 811-811.

Keszei M, Latchman YE, Vanguri VK, Brown DR, Detre C, Morra M, Arancibia-Carcamo CV, Paul E, Calpe S, Castro W et al. 2011. Auto-antibody production and glomerulonephritis incongenic Slamf1(-/-) and Slamf2(-/-) [B6.129] but not in Slamf1(-/-) and Slamf2(-/-) [BALB/c.129] mice (vol 23, pg 149, 2011) INTERNATIONAL IMMUNOLOGY, 23 (7), pp. 463-463. | Read more

Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, Travis SPL, Powrie F. 2011. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med, 208 (6), pp. 1127-1133. | Show Abstract | Read more

Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23-driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23-responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3⁻ cells in IBD. IL17A and IL17F expression is restricted to CD56⁻ ILCs, whereas IL-23 induces IL22 and IL26 in the CD56⁺ ILC compartment. Furthermore, we observed a significant and selective increase in CD127⁺CD56⁻ ILCs in the inflamed intestine in Crohn's disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23-responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.

Keszei M, Latchman YE, Vanguri VK, Brown DR, Detre C, Morra M, Arancibia-Carcamo CV, Paul E, Calpe S, Castro W et al. 2011. Auto-antibody production and glomerulonephritis in congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/- [BALB/c.129] mice. Int Immunol, 23 (2), pp. 149-158. | Show Abstract | Read more

Several genes in an interval of human and mouse chromosome 1 are associated with a predisposition for systemic lupus erythematosus. Congenic mouse strains that contain a 129-derived genomic segment, which is embedded in the B6 genome, develop lupus because of epistatic interactions between the 129-derived and B6 genes, e.g. in B6.129chr1b mice. If a gene that is located on chromosome 1 is altered through homologous recombination in 129-derived embryonic stem cells (ES cells) and if the resultant knockout mouse is backcrossed with B6, interpretation of the phenotype of the mutant mouse may be affected by epistatic interactions between the 129 and B6 genomes. Here, we report that knockout mice of two adjacent chromosome 1 genes, Slamf1(-/-) and Slamf2(-/-), which were generated with the same 129-derived ES cell line, develop features of lupus, if backcrossed on to the B6 genetic background. By contrast, Slamf1(-/-) [BALB/c.129] and Slamf2(-/-) [BALB/c.129] do not develop disease. Surprisingly, Slamf1(-/-) [B6.129] mice develop both auto-antibodies and glomerulonephritis between 3 and 6 months of age, while disease fully develops in Slamf1(-/-) [B6.129] mice after 9-14 months. Functional analyses of CD4(+) T cells reveals that Slamf2(-/-) T cells are resistant to tolerance induction in vivo. We conclude that the Slamf2(-/-) mutation may have a unique influence on T-cell tolerance and lupus.

Izcue A, Hue S, Buonocore S, Arancibia-Cárcamo CV, Ahern PP, Iwakura Y, Maloy KJ, Powrie F. 2008. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity, 28 (4), pp. 559-570. | Show Abstract | Read more

Interleukin-23 (IL-23) is an inflammatory cytokine that plays a key role in the pathogenesis of several autoimmune and inflammatory diseases. It orchestrates innate and T cell-mediated inflammatory pathways and can promote T helper 17 (Th17) cell responses. Utilizing a T cell transfer model, we showed that IL-23-dependent colitis did not require IL-17 secretion by T cells. Furthermore, IL-23-independent intestinal inflammation could develop if immunosuppressive pathways were reduced. The frequency of naive T cell-derived Foxp3+ cells in the colon increased in the absence of IL-23, indicating a role for IL-23 in controlling regulatory T cell induction. Foxp3-deficient T cells induced colitis when transferred into recipients lacking IL-23p19, showing that IL-23 was not essential for intestinal inflammation in the absence of Foxp3. Taken together, our data indicate that overriding immunosuppressive pathways is an important function of IL-23 in the intestine and could influence not only Th17 cell activity but also other types of immune responses.

Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204 (8), pp. 1757-1764. | Show Abstract | Read more

Foxp3(+) regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3(+) T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-beta can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103(+) mesenteric lymph node dendritic cells (DCs) that induce the development of Foxp3(+) T reg cells. Importantly, promotion of T reg cell responses by CD103(+) DCs is dependent on TGF-beta and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine.

Arancibia-Cárcamo CV, Osawa H, Arnett HA, Háskova Z, George AJT, Ono SJ, Ting JP-Y, Streilein JW. 2004. A CIITA-independent pathway that promotes expression of endogenous rather than exogenous peptides in immune-privileged sites. Eur J Immunol, 34 (2), pp. 471-480. | Show Abstract | Read more

A CIITA-independent pathway of MHC class II expression has been found in the eye and the brain, both immune-privileged sites. Although corneal endothelial cells were unable to express MHC class II in response to IFN-gamma alone, these cells readily expressed MHC class II molecules via a CIITA-independent pathway when triggered by simultaneous exposure to IFN-gamma and TNF-alpha. CIITA-independent expression of MHCclass II molecules enabled corneal endothelial cells to present cytosolic, but not endosomal, ovalbumin (OVA) to OVA-primed T cells. To determine whether CIITA-independent expression of MHC class II is relevant in vivo, minor H-only-incompatible corneal allografts prepared from CIITA knockout (KO) mice, MHC class II KO mice or wild-type donors were placed in eyes of normal mice. Cornea allografts from wild-type and CIITA KO mice suffered similar rejection fates, whereas far fewer class II-deficient corneas were rejected. In addition, MHC class II-bearing macrophages were observed in cuprizone-induced inflammatory and demyelinating brain lesions of CIITA KO mice. We conclude that class II expression via the CIITA-independent pathway enhances the vulnerability to rejection of corneal grafts expressing minor antigens. The potential relevance of CIITA-independent MHC class II expression at immune-privileged sites is discussed in relation to tolerance to strong autoantigens.

George AJ, Arancibia-Cárcamo CV, Awad HM, Comer RM, Fehevari Z, King WJ, Kadifachi M, Hudde T, Kerouedan-Lebossé C, Mirza F et al. 2000. Gene delivery to the corneal endothelium. Am J Respir Crit Care Med, 162 (4 Pt 2), pp. S194-S200. | Show Abstract | Read more

Gene transfer to the corneal endothelium has potential for modulating rejection of corneal grafts. It can also serve as a convenient and useful model for gene therapy of other organs. In this article we review the work carried out in our laboratory using both viral and nonviral vectors to obtain gene expression in the cornea.

Oral HB, Arancibia-Cárcamo CV, Haskard DO, George AJ. 1999. A method for determining the cytoprotective effect of catalase in transiently transfected cell lines and in corneal tissue. Anal Biochem, 267 (1), pp. 196-202. | Show Abstract | Read more

Both when developing gene constructs for therapeutic purposes and when testing the biological function of proteins, it would be convenient to use cells or tissues that have been transiently transfected with the gene of interest. However, determining the protective effects of transient gene expression is complicated by a low transfection efficiency, resulting in only a minority of the cells expressing the introduced gene and consequently a reduced sensitivity of assays measuring the death of transfected cells. In this study we have developed a convenient technique for determining cell death in transiently transfected vascular endothelial cell monolayers and in corneal tissue. Vascular endothelial cells were cotransfected with human catalase cDNA and the lacZ gene encoding beta-galactosidase, under conditions in which cells expressing beta-galactosidase also expressed catalase. By assaying release of beta-galactosidase upon cell death, it was possible to show that catalase transfection led to significant protection against the cytotoxic effect of increasing concentrations of hydrogen peroxide. The assay was adapted to demonstrate the protective effects of catalase transfection on hydrogen peroxide-mediated injury of intact corneal endothelium under ex vivo culture conditions. This assay should also be useful for characterizing the cytoprotective effects of other genes in transient transfection systems.

1998. A CIITA dominant negative mutant Expert Opinion on Therapeutic Patents, 8 (12), pp. 1759-1761. | Read more

Hart SL, Arancibia-Cárcamo CV, Wolfert MA, Mailhos C, O'Reilly NJ, Ali RR, Coutelle C, George AJ, Harbottle RP, Knight AM et al. 1998. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther, 9 (4), pp. 575-585. | Show Abstract | Read more

Nonviral vectors consisting of integrin-targeting peptide/DNA (ID) complexes have the potential for widespread application in gene therapy. The transfection efficiency of this vector, however, has been limited by endosomal degradation. We now report that lipofectin (L) incorporated into the ID complexes enhances integrin-mediated transfection, increasing luciferase expression by more than 100-fold. The transfection efficiency of Lipofectin/Integrin-binding peptide/DNA (LID) complexes, assessed by beta-galactosidase reporter gene expression and X-gal staining, was improved from 1% to 10% to over 50% for three different cell lines, and from 0% to approximately 25% in corneal endothelium in vitro. Transfection complexes have been optimized with respect to their transfection efficiency and we have investigated their structure, function, and mode of transfection. Both ID and LID complexes formed particles, unlike the fibrous network formed by lipofectin/DNA complexes (LD). Integrin-mediated transfection by LID complexes was demonstrated by the substantially lower transfection efficiency of LKD complexes in which the integrin-biding peptide was substituted for K16 (K). Furthermore, the transfection efficiency of complexes was shown to be dependent on the amount of integrin-targeting ligand in the complex. Finally, a 34% reduction in integrin-mediated transfection efficiency by LID complexes was achieved with a competing monoclonal antibody. The role of lipofectin in LID complexes appears, therefore, to be that of a co-factor, enhancing the efficiency of integrin-mediated transfection. The mechanism of enhancement is likely to involve a reduction in the extent of endosomal degradation of DNA.

Arancibia-Cárcamo CV, Oral HB, Haskard DO, Larkin DF, George AJ. 1998. Lipoadenofection-mediated gene delivery to the corneal endothelium: prospects for modulating graft rejection. Transplantation, 65 (1), pp. 62-67. | Show Abstract | Read more

BACKGROUND: Gene transfer to the corneal endothelium has potential for the prevention or reversal of corneal allograft rejection. Previous work has examined adenoviral vectors for gene transfer to endothelium. These have a number of theoretical and practical disadvantages, both for experimental and clinical applications. We have therefore used lipoadenofection, in which plasmid DNA is delivered using a combination of liposomes and adenovirus, to transfer marker genes to the cornea. METHODS: Corneas were obtained from New Zealand White rabbits and cultured ex vivo using standard conditions. The corneas were transfected using either lipofection or lipoadenofection with plasmids encoding marker genes. The efficiency of gene transfer and the location and kinetics of gene expression were determined. We also investigated the delivery of a gene construct containing an inducible promoter that is activated by tumor necrosis factor (TNF), to determine whether expression of the relevant genes could be controlled by exogenous factors such as cytokines. RESULTS: This study shows that gene expression is limited to the endothelium and that expression is transient. Furthermore, we have shown that expression of a gene controlled by an inducible promoter only occurs when TNF is present. CONCLUSIONS: These data indicate that lipofection is an efficient method to transfer therapeutic genes to the corneal epithelium, and that it can be used to transfer constructs that utilize an inducible promoter controlled by TNF. As TNF is present in the aqueous humor during allograft rejection, and this is in contact with the corneal endothelium, this has the potential to restrict expression of a therapeutic gene to rejection episodes in the cornea.

Gwela A, Siddhanathi P, Chapman RW, Travis S, Powrie F, Arancibia-Cárcamo CV, Geremia A. 2017. Th1 and Innate Lymphoid Cells Accumulate in Primary Sclerosing Cholangitis-associated Inflammatory Bowel Disease. J Crohns Colitis, 11 (9), pp. 1124-1134. | Show Abstract | Read more

Background and Aims: Primary sclerosing cholangitis [PSC] is an idiopathic chronic disorder of the hepatobiliary system associated with inflammatory bowel disease [IBD], mainly ulcerative colitis [UC]. Colitis in patients with PSC and UC [PSC-UC] exhibits characteristic features and is linked to increased colon cancer risk. Genetic studies have identified immune-related susceptibility genes that only partially overlap with those involved in IBD. These observations suggest that PSC-UC may represent a distinct form of IBD. It remains to be elucidated whether different immune mechanisms are involved in colitis in these patients. We aimed to evaluate systemic and intestinal T cell and innate lymphoid cell [ILC] responses, previously associated with IBD, in patients with PSC-UC compared with patients with UC and healthy controls. Methods: Blood samples and colorectal biopsies were collected from patients with PSC-UC, patients with UC, and healthy controls. T cell and ILC phenotypes were analysed by multicolour flow cytometry. Results: Chemokine receptor [CCR] profiling of circulating T cells showed decreased CCR6-CXCR3+ Th1 cells in PSC-UC, but increased CCR6-CCR4+ Th2 cells only in UC, whereas increased CCR6+CCR4+ Th17 cells were found in both patient groups compared with healthy controls. Increased frequencies of IFN-γ secreting T cells were found in the colon of patients with PSC-UC compared with UC. Interestingly, we observed accumulation of ILC in the colon in PSC-UC. Conclusions: Our study suggests that PSC-UC represents a different immunological disorder from UC, characterised by increased intestinal Th1 and ILC responses. These results provide further evidence that PSC-UC may represent a distinct form of IBD.

West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, Coccia M, Görtz D, This S, Stockenhuber K et al. 2017. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med, 23 (5), pp. 579-589. | Show Abstract | Read more

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.

de Wit J, Al-Mossawi MH, Hühn MH, Arancibia-Cárcamo CV, Doig K, Kendrick B, Gundle R, Taylor P, Mcclanahan T, Murphy E et al. 2016. RORγt inhibitors suppress T(H)17 responses in inflammatory arthritis and inflammatory bowel disease. J Allergy Clin Immunol, 137 (3), pp. 960-963. | Read more

Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, Travis SPL, Powrie F. 2011. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med, 208 (6), pp. 1127-1133. | Show Abstract | Read more

Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23-driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23-responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3⁻ cells in IBD. IL17A and IL17F expression is restricted to CD56⁻ ILCs, whereas IL-23 induces IL22 and IL26 in the CD56⁺ ILC compartment. Furthermore, we observed a significant and selective increase in CD127⁺CD56⁻ ILCs in the inflamed intestine in Crohn's disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23-responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.

Izcue A, Hue S, Buonocore S, Arancibia-Cárcamo CV, Ahern PP, Iwakura Y, Maloy KJ, Powrie F. 2008. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity, 28 (4), pp. 559-570. | Show Abstract | Read more

Interleukin-23 (IL-23) is an inflammatory cytokine that plays a key role in the pathogenesis of several autoimmune and inflammatory diseases. It orchestrates innate and T cell-mediated inflammatory pathways and can promote T helper 17 (Th17) cell responses. Utilizing a T cell transfer model, we showed that IL-23-dependent colitis did not require IL-17 secretion by T cells. Furthermore, IL-23-independent intestinal inflammation could develop if immunosuppressive pathways were reduced. The frequency of naive T cell-derived Foxp3+ cells in the colon increased in the absence of IL-23, indicating a role for IL-23 in controlling regulatory T cell induction. Foxp3-deficient T cells induced colitis when transferred into recipients lacking IL-23p19, showing that IL-23 was not essential for intestinal inflammation in the absence of Foxp3. Taken together, our data indicate that overriding immunosuppressive pathways is an important function of IL-23 in the intestine and could influence not only Th17 cell activity but also other types of immune responses.

Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204 (8), pp. 1757-1764. | Show Abstract | Read more

Foxp3(+) regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3(+) T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-beta can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103(+) mesenteric lymph node dendritic cells (DCs) that induce the development of Foxp3(+) T reg cells. Importantly, promotion of T reg cell responses by CD103(+) DCs is dependent on TGF-beta and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine.

Arancibia-Cárcamo CV, Osawa H, Arnett HA, Háskova Z, George AJT, Ono SJ, Ting JP-Y, Streilein JW. 2004. A CIITA-independent pathway that promotes expression of endogenous rather than exogenous peptides in immune-privileged sites. Eur J Immunol, 34 (2), pp. 471-480. | Show Abstract | Read more

A CIITA-independent pathway of MHC class II expression has been found in the eye and the brain, both immune-privileged sites. Although corneal endothelial cells were unable to express MHC class II in response to IFN-gamma alone, these cells readily expressed MHC class II molecules via a CIITA-independent pathway when triggered by simultaneous exposure to IFN-gamma and TNF-alpha. CIITA-independent expression of MHCclass II molecules enabled corneal endothelial cells to present cytosolic, but not endosomal, ovalbumin (OVA) to OVA-primed T cells. To determine whether CIITA-independent expression of MHC class II is relevant in vivo, minor H-only-incompatible corneal allografts prepared from CIITA knockout (KO) mice, MHC class II KO mice or wild-type donors were placed in eyes of normal mice. Cornea allografts from wild-type and CIITA KO mice suffered similar rejection fates, whereas far fewer class II-deficient corneas were rejected. In addition, MHC class II-bearing macrophages were observed in cuprizone-induced inflammatory and demyelinating brain lesions of CIITA KO mice. We conclude that class II expression via the CIITA-independent pathway enhances the vulnerability to rejection of corneal grafts expressing minor antigens. The potential relevance of CIITA-independent MHC class II expression at immune-privileged sites is discussed in relation to tolerance to strong autoantigens.

George AJ, Arancibia-Cárcamo CV, Awad HM, Comer RM, Fehevari Z, King WJ, Kadifachi M, Hudde T, Kerouedan-Lebossé C, Mirza F et al. 2000. Gene delivery to the corneal endothelium. Am J Respir Crit Care Med, 162 (4 Pt 2), pp. S194-S200. | Show Abstract | Read more

Gene transfer to the corneal endothelium has potential for modulating rejection of corneal grafts. It can also serve as a convenient and useful model for gene therapy of other organs. In this article we review the work carried out in our laboratory using both viral and nonviral vectors to obtain gene expression in the cornea.

Oral HB, Arancibia-Cárcamo CV, Haskard DO, George AJ. 1999. A method for determining the cytoprotective effect of catalase in transiently transfected cell lines and in corneal tissue. Anal Biochem, 267 (1), pp. 196-202. | Show Abstract | Read more

Both when developing gene constructs for therapeutic purposes and when testing the biological function of proteins, it would be convenient to use cells or tissues that have been transiently transfected with the gene of interest. However, determining the protective effects of transient gene expression is complicated by a low transfection efficiency, resulting in only a minority of the cells expressing the introduced gene and consequently a reduced sensitivity of assays measuring the death of transfected cells. In this study we have developed a convenient technique for determining cell death in transiently transfected vascular endothelial cell monolayers and in corneal tissue. Vascular endothelial cells were cotransfected with human catalase cDNA and the lacZ gene encoding beta-galactosidase, under conditions in which cells expressing beta-galactosidase also expressed catalase. By assaying release of beta-galactosidase upon cell death, it was possible to show that catalase transfection led to significant protection against the cytotoxic effect of increasing concentrations of hydrogen peroxide. The assay was adapted to demonstrate the protective effects of catalase transfection on hydrogen peroxide-mediated injury of intact corneal endothelium under ex vivo culture conditions. This assay should also be useful for characterizing the cytoprotective effects of other genes in transient transfection systems.

Hart SL, Arancibia-Cárcamo CV, Wolfert MA, Mailhos C, O'Reilly NJ, Ali RR, Coutelle C, George AJ, Harbottle RP, Knight AM et al. 1998. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther, 9 (4), pp. 575-585. | Show Abstract | Read more

Nonviral vectors consisting of integrin-targeting peptide/DNA (ID) complexes have the potential for widespread application in gene therapy. The transfection efficiency of this vector, however, has been limited by endosomal degradation. We now report that lipofectin (L) incorporated into the ID complexes enhances integrin-mediated transfection, increasing luciferase expression by more than 100-fold. The transfection efficiency of Lipofectin/Integrin-binding peptide/DNA (LID) complexes, assessed by beta-galactosidase reporter gene expression and X-gal staining, was improved from 1% to 10% to over 50% for three different cell lines, and from 0% to approximately 25% in corneal endothelium in vitro. Transfection complexes have been optimized with respect to their transfection efficiency and we have investigated their structure, function, and mode of transfection. Both ID and LID complexes formed particles, unlike the fibrous network formed by lipofectin/DNA complexes (LD). Integrin-mediated transfection by LID complexes was demonstrated by the substantially lower transfection efficiency of LKD complexes in which the integrin-biding peptide was substituted for K16 (K). Furthermore, the transfection efficiency of complexes was shown to be dependent on the amount of integrin-targeting ligand in the complex. Finally, a 34% reduction in integrin-mediated transfection efficiency by LID complexes was achieved with a competing monoclonal antibody. The role of lipofectin in LID complexes appears, therefore, to be that of a co-factor, enhancing the efficiency of integrin-mediated transfection. The mechanism of enhancement is likely to involve a reduction in the extent of endosomal degradation of DNA.

Arancibia-Cárcamo CV, Oral HB, Haskard DO, Larkin DF, George AJ. 1998. Lipoadenofection-mediated gene delivery to the corneal endothelium: prospects for modulating graft rejection. Transplantation, 65 (1), pp. 62-67. | Show Abstract | Read more

BACKGROUND: Gene transfer to the corneal endothelium has potential for the prevention or reversal of corneal allograft rejection. Previous work has examined adenoviral vectors for gene transfer to endothelium. These have a number of theoretical and practical disadvantages, both for experimental and clinical applications. We have therefore used lipoadenofection, in which plasmid DNA is delivered using a combination of liposomes and adenovirus, to transfer marker genes to the cornea. METHODS: Corneas were obtained from New Zealand White rabbits and cultured ex vivo using standard conditions. The corneas were transfected using either lipofection or lipoadenofection with plasmids encoding marker genes. The efficiency of gene transfer and the location and kinetics of gene expression were determined. We also investigated the delivery of a gene construct containing an inducible promoter that is activated by tumor necrosis factor (TNF), to determine whether expression of the relevant genes could be controlled by exogenous factors such as cytokines. RESULTS: This study shows that gene expression is limited to the endothelium and that expression is transient. Furthermore, we have shown that expression of a gene controlled by an inducible promoter only occurs when TNF is present. CONCLUSIONS: These data indicate that lipofection is an efficient method to transfer therapeutic genes to the corneal epithelium, and that it can be used to transfer constructs that utilize an inducible promoter controlled by TNF. As TNF is present in the aqueous humor during allograft rejection, and this is in contact with the corneal endothelium, this has the potential to restrict expression of a therapeutic gene to rejection episodes in the cornea.

CMV and inflammatory bowel disease

The development of Ulcerative Colitis (UC) is commonly believed to be the result of changes in the balance between the host immune system and gut microbiome. This imbalance can be the result of genetic changes – particularly in immune signaling and regulatory pathways, but these only account for a fraction of the risk, suggesting there are environmental or acquired factors which contribute. Cytomegalovirus (CMV) is a ubiquitous beta-herpesvirus which infects billions of people worldwide, but ...

View project

3286