Effects of Steroids in Cultured Human Type-2 Cytokine Producing Cells

Jian Luo^{1,2}, Simei Go¹, Linda Stöger¹, Clare Hardman³, Maryam Salimi³, Rahul Shrimanker¹, Gareth Hynes¹, Oxford Wang¹, Graham Ogg³, Ian Pavord¹, Luzheng Xue¹

¹Respiratory Medicine Unit, and HIHR Oxford Biomedical Research Centre for Respiratory Medicine, University of Oxford, United Kingdom ²Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, China ³MRC Human Immunology Unit. University of Oxford, United Kingdom

Background

- Type-2 T helpers (Th2), type-2 cytotoxic T cells (Tc2), and group 2 innate lymphoid cells (ILC2) have been found to be important sources of type-2 cytokines.
- In patients with severe asthma, Th2, Tc2 and ILC2 are reported to be increased in both blood and sputum.
- Corticosteroids are potent anti-inflammatory treatment but patients with severe asthma have a diminished response.
- In our cohort study, ILC2 numbers in peripheral blood remained unchanged after treatment of oral corticosteroids.
- Here we tested the hypothesis that ILC2 are resistant to the apoptotic effects of corticosteroids in vitro and have explored potential mechanisms.

Aims

- To evaluate the apoptotic responses of the cultured human Th2, Tc2 and ILC2 to corticosteroids.
- To confirm the steroid resistance of ILC2 in vitro (see another abstract by Hynes G, et al).

Bibliography

- 1. Smith SG, Chen R, Kjarsgaard M, et al. J Allergy Clin Immunol. 2016;137(1):75-86.e8.
- Liu S, Verma M, Michalec L, et al. J Allergy Clin Immunol. 2018;141(1):257-268.e6

Methods

- Human Th2 and Tc2 cells were isolated from CD Leucocyte Cones by MACS beads and cultured.
- Human ILC2 cells were sorted by BD FACS sorter from mononuclear cells of blood of healthy volunteers and cultured.
- Cells were treated with serial concentrations (0.1nM to 1000nM) of dexamethasone with or without the multi-drug resistance protein 1 (MDR1) inhibitors, Tariguidar and Zosuguidar.
- Cell apoptosis was measured with Annexin V by using flow cytometry.

Results

- Dexamethasone caused a concentration dependent increase in the percentage of apoptotic Th2, Tc2 and ILC2.
- The half maximal effective concentration (EC₅₀) of dexamethasone on ILC2 (5.467nM) was much higher than that in Th2 (1.823nM) and Tc2 (1.882nM).
- Addition of Tariquidar (60nM) and Zosuquidar (60nM) did not enhance ILC2's response to dexamethasone induced apoptosis.

Conclusion

- ILC2 cells are less sensitive to dexamethasone induced apoptosis, compared to Th2 and Tc2.
- The responses of ILC2 to dexamethasone were not increased by MDR1 inhibitors, suggesting that MDR1 might not contribute to the apoptotic resistance of ILC2 to steroids.

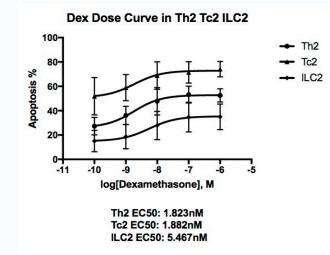
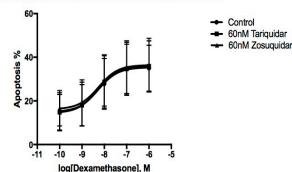



Figure 1 Dexamethasone induced cells apoptosis in Th2, Tc2 and ILC2.

Dex Dose Curve in ILC2 with 60nM MDR1 Inhibitors

Control IC50: 5.467nM 60nM Tariquidar IC50: 5.015nM 60nM Zosuquidar IC50: 5.492nM

Figure 2 MDR1 inhibitor could not increase the sensitivity to dexamethasone induced cell apoptosis in ILC2