Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIM: To determine which patients might benefit most from retrograde viewing during colonoscopy through subset analysis of randomized, controlled trial data. METHODS: The Third Eye® Retroscope® Randomized Clinical Evaluation (TERRACE) was a randomized, controlled, multicenter trial designed to evaluate the efficacy of a retrograde-viewing auxiliary imaging device that is used during colonoscopy to provide a second video image which allows viewing of areas on the proximal aspect of haustral folds and flexures that are difficult to see with the colonoscope's forward view. We performed a post-hoc analysis of the TERRACE data to determine whether certain subsets of the patient population would gain more benefit than others from use of the device. Subjects were patients scheduled for colonoscopy for screening, surveillance or diagnostic workup, and each underwent same-day tandem examinations with standard colonoscopy (SC) and Third Eye colonoscopy (TEC), randomized to SC followed by TEC or vice versa. RESULTS: Indication for colonoscopy was screening in 176/345 subjects (51.0%), surveillance after previous polypectomy in 87 (25.2%) and diagnostic workup in 82 (23.8%). In 4 subjects no indication was specified. Previously reported overall results had shown a net additional adenoma detection rate (ADR) with TEC of 23.2% compared to SC. Relative risk (RR) of missing adenomas with SC vs TEC as the initial procedure was 1.92 (P = 0.029). Post-hoc subset analysis shows additional ADRs for TEC compared to SC were 4.4% for screening, 35.7% for surveillance, 55.4% for diagnostic and 40.7% for surveillance and diagnostic combined. The RR of missing adenomas with SC vs TEC was 1.11 (P = 0.815) for screening, 3.15 (P = 0.014) for surveillance, 8.64 (P = 0.039) for diagnostic and 3.34 (P = 0.003) for surveillance and diagnostic combined. Although a multivariate Poisson regression suggested gender as a possibly significant factor, subset analysis showed that the difference between genders was not statistically significant. Age, bowel prep quality and withdrawal time did not significantly affect the RR of missing adenomas with SC vs TEC. Mean sizes of adenomas detected with TEC and SC were similar at 0.59 cm and 0.56 cm, respectively (P = NS). CONCLUSION: TEC allows detection of significantly more adenomas compared to SC in patients undergoing surveillance or diagnostic workup, but not in screening patients (ClinicalTrials.gov Identifier: NCT01044732).

Original publication

DOI

10.3748/wjg.v18.i26.3400

Type

Journal article

Journal

World J Gastroenterol

Publication Date

14/07/2012

Volume

18

Pages

3400 - 3408

Keywords

Adenomas, Colonoscopy, Colorectal cancer, Miss rates, Retrograde-viewing, Adenoma, Adult, Aged, Aged, 80 and over, Colonic Neoplasms, Colonoscopy, Early Detection of Cancer, Endoscopes, Female, Humans, Male, Medical Oncology, Middle Aged, Multivariate Analysis, Regression Analysis, Reproducibility of Results