Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The role of the innate immune protein mannose-binding lectin (MBL) in host defence against severe respiratory infection remains controversial. Thoracic empyema is a suppurative lung infection that arises as a major complication of pneumonia and is associated with a significant mortality. Although the pathogenesis of thoracic empyema is poorly understood, genetic susceptibility loci for this condition have recently been identified. The possible role of MBL genotypic deficiency in susceptibility to thoracic empyema has not previously been reported. METHODS: To investigate this further we compared the frequencies of the six functional MBL polymorphisms in 170 European individuals with thoracic empyema and 225 healthy control individuals. RESULTS: No overall association was observed between MBL genotypic deficiency and susceptibility to thoracic empyema (2 x 2 Chi square = 0.02, P = 0.87). Furthermore, no association was seen between MBL deficiency and susceptibility to the Gram-positive or pneumococcal empyema subgroups. MBL genotypic deficiency did not associate with progression to death or requirement for surgery. CONCLUSIONS: Our results suggest that MBL genotypic deficiency does not associate with susceptibility to thoracic empyema in humans.

Original publication

DOI

10.1186/1471-2350-11-5

Type

Journal article

Journal

BMC Med Genet

Publication Date

15/01/2010

Volume

11

Keywords

Chi-Square Distribution, Empyema, Pleural, Genetic Association Studies, Genetic Predisposition to Disease, Genotype, Humans, Mannose-Binding Lectin, Polymerase Chain Reaction, Polymorphism, Single Nucleotide