Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background and aimsSystemic inflammation is well-recognized to be associated with ulcerative colitis (UC), but whether these effects are causal or consequential remains unclear. We aimed to define potential causal relationship of cytokine dysregulation with different tiers of evidence.MethodsWe firstly synthesized serum proteomic profiling data from two multi-centered observational studies, in which a panel of systemic inflammatory proteins was analyzed to examine their associations with UC risk. To further dissect observed associations, we then performed a bidirectional two-sample Mendelian randomization (TSMR) analysis from both forward and reverse directions using five genome-wide association study (GWAS) summary level data for serum proteomic profiles and the largest GWAS of 28,738 European-ancestry individuals for UC risk.ResultsPooled analysis of serum proteomic data identified 14 proteins to be associated with the risk of UC. Forward MR analysis using only cis-acting protein quantitative trait loci (cis-pQTLs) or trans-pQTLs further validated causal associations of two chemokines and the increased risk of UC: C-X-C motif chemokine ligand 9 (CXCL9) (OR, 1.45, 95% CI, 1.08-1.95, P=.012) and C-C motif chemokine ligand 11 (CCL11) (OR, 1.14, 95%CI: 1.09-1.18, P=3.89×10  -10). Using both cis- and trans-acting pQTLs, an association of caspase-8 (CASP8) (OR, 1.04, 95% CI, 1.03-1.05, P= 7.63×10  -19) was additionally identified. Reverse MR did not find any influence of genetic predisposition to UC on any of these three inflammation proteins.ConclusionsPre-existing elevated levels of CXCL9, CCL11 and CASP8 may play a role in the pathogenesis of UC.

Original publication

DOI

10.1093/ecco-jcc/jjac191

Type

Journal article

Journal

Journal of Crohn's & colitis

Publication Date

12/2022

Addresses

Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.